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Abstract. Convolutional neural networks are at the core of state-of-
the-art approaches to a variety of computer vision tasks. Visualizations
of neural networks typically take the form of static diagrams, or interac-
tive toy-sized networks, which fail to illustrate the networks’ scale and
complexity, and furthermore do not enable meaningful experimentation.
Motivated by this observation, this paper presents a new interactive
visualization of neural networks trained on handwritten digit recogni-
tion, with the intent of showing the actual behavior of the network given
user-provided input. The user can interact with the network through a
drawing pad, and watch the activation patterns of the network respond
in real-time. The visualization is available at http://scs.ryerson.ca/
∼aharley/vis/.

1 Introduction

Convolutional neural networks (CNNs) are at the core of state-of-the-art
approaches to a variety of computer vision tasks, including image classification
[1] and object detection [2]. Despite this prevalence, interactive neural network
visualization is still a relatively unexplored topic. Interactive simulations of toy
networks have long existed [3], and visualizations of individual learned filters
and features have emerged [4], but few visualizations illustrate how large-scale
CNNs abstract from input to output. Motivated by this observation, this paper
presents a new interactive visualization of a CNN trained on a specific task, with
the intent of showing not only what it has learned, but how it behaves given new
user-provided input.

Interactively visualizing the behavior of a neural network has a number of
practical applications. First, having a detailed understanding of how neural net-
works behave is important for making practical use of them, so it is useful to
have a visualization to support this understanding. Second, an interactive visu-
alization of a neural network gives users the power to easily experiment with
the input, and observe the effects of their experimentation immediately. This
type of experimentation facilitates the process of exploring the strengths and
weaknesses of a network, which is a critical part of designing better networks [4].
A third benefit of visualizing the behavior of a network is that it allows users to
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Fig. 1. The proposed visualization: an interactive node-link diagram of a convolutional
neural network trained to recognize handwritten digits. On the left is a drawing pad,
where the user can draw numbers for the network to classify. The activation level of
each node is encoded in hue and brightness. Studying the architecture of the network,
and experimenting with its input-output process, can enlighten students of machine
learning as to how the network performs its abstraction from images to digits.

explore the layer-by-layer output of a network, and build intuitions about how
neural networks perform hierarchical abstraction from input to output [5].

This visualization is targeted towards students of machine learning, who
are learning how to design, code, and train new neural networks. To make the
visualization useful to that audience, the visualization is based on the well-
established node-link diagram representation of fully-connected neural networks.
The visualization is supported by an actual neural network, designed and trained
to recognize handwritten digits with high (99 %) accuracy. In the neural network
literature, handwritten digit recognition is a well-known solved problem, and
often serves as an example of an appropriate application of neural networks [6].
Users are able to interact with this network through a “drawing pad”, on which
they can write new numbers for the network to recognize. A screenshot of the
visualization is shown in Fig. 1.

This paper begins by reviewing prior work on visualizing neural networks,
with a special emphasis on identifying why the classic node-link diagram repre-
sentation has endured the test of time. The paper then proceeds to describe the
approach to developing the current visualization, considering the challenges of
revealing inner detail, the use of color, and the elements of interaction. Finally,
the effectiveness of the visualization is discussed, and future work is proposed.

Contributions: The proposed visualization is the first to accurately and inter-
actively illustrate the structure, scale, and low-level inner workings of a CNN
applied to a practical computer vision problem. Prior work on this topic was
limited to simpler architectures, smaller problems, or static visualizations. The
new visualization can be explored at http://scs.ryerson.ca/∼aharley/vis/.



Interactive Node-Link Visualization of CNNs 869

Fig. 2. Typical illustrations of fully-connected (left) and convolutional (right) neural
networks (adapted from [12]).

2 Background and Related Work

This section establishes the context of the current work, by: (i) defining neural
networks, and exploring why node-link diagrams are typically used to represent
them, (ii) examining the challenges of complexity and scale that arise when using
node-link diagrams for large neural networks, and (iii) considering the effective
use of interaction.

2.1 Neurons as Nodes in a Graph

Neural networks compose many small functions in a network-like architecture,
creating a larger function capable of pattern recognition [7]. In biological neural
networks, the unitary function is a neuron, and neurons are connected together
in extremely complex arrangements [8]. Artificial neural networks can be arbi-
trarily simple. One of the simplest arrangements is as a feed-forward graph
with stacked “layers” of nodes, where every pair of neighboring layers is fully
connected [9,10] (see Fig. 2, left). This arrangement is called a fully-connected
neural network. A node-link visualization of this type of network is a straight-
forward outcome of (i) treating all neurons as identical processor units, and (ii)
choosing an arrangement of neurons defined by a simple graph architecture. For
these reasons, node-link diagrams of fully-connected networks are a mainstay in
the inventory of visualizations for machine learning educators and researchers
(e.g., see [6,11]).

Modern implementations of neural networks often use more complex archi-
tectures, but the variations typically appear underneath a traditional fully-
connected network. That is, these implementations process the raw input (such
as an image) with an alternative network, and then use the output of that net-
work as input to a fully-connected network. Convolutional networks interact with
fully-connected networks in this way. Figure 2 (right) shows a typical diagram
for illustrating a CNN. The algorithm for CNNs relies heavily on the convolution
operation, which is used to sequentially apply a series of (learned) filters to the
input. A CNN can also be interpreted as a graph, which although is different in
appearance from the fully-connected network graph, uses all the same mathe-
matics for learning [12]. Figure 3 illustrates how convolutions can be interpreted
as graph-like connections. For students learning about CNNs for the first time,
it can be difficult to mentally assimilate the relationship between node-link dia-
grams and convolutional nets. One of the goals of the current visualization is to
make this relationship easier to understand.
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Fig. 3. A 3× 3 convolution filter is equivalent to a node with nine weighted connections,
where the filter values correspond to the weights. A convolution layer applies this filter
to every location in the input image, producing a new (filtered) image.

2.2 Challenges of Complexity and Scale

The visualizations of neural networks in machine learning literature have changed
only slightly over the years. The most significant trend is that the node-link
diagrams have become smaller and less detailed over time. This is consistent with
fully-connected networks’ declining novelty, and reflects an intent of emphasizing
things other than the structure of the networks. The most common simplified
representation replaces each layer of nodes with a solid block, and replaces the
dense connections between layers with either a single arrow pointing from one
layer to the next [1], or with edges connecting the outskirts of the layers [13].
Simplifying the node-link diagram into a block diagram also addresses a problem
of scale. To solve problems of practical value, the required network is often
enormously large. A node-link diagram of such a network would have enough
edges that the space in between layers would be opaque with lines. A block
diagram is therefore an effective way of overcoming this problem of scale. The
fully-connected portion of the CNN in Fig. 2 shows a simplification along these
lines.

The main issue with grouping the nodes together by layer is that it eliminates
the possibility for interaction and detailed analysis. In other domains, where
analysis is often the primary focus, other solutions have been introduced. For
example, it is sometimes possible to reveal a great deal of information about a set
of connected nodes by bundling related edges together [14]. An alternative is to
display only a representative subset of the nodes, or perhaps allow users to hover
over a node to see edges or stubs leading into it [15,16]. A closely related strategy
to these is the use of multi-scale navigation to “search, show context, expand
on demand” [17]. In all, visualization research indicates that focus-plus-context
techniques [18] could serve as reasonable alternatives to simply not showing the
edges. The current work makes use of these ideas.

2.3 Prior Interactive Visualizations

Many interactive neural network visualizations exist. An early and popular visu-
alization is the Stuttgart Neural Network Simulator (SNNS) [19], which shows
neural nets as 2D and 3D node-link diagrams, in which the nodes and edges
are colored in a scheme that maps negative and positive values to different ends
of a palette. However, SNNS is targeted toward researchers, and accordingly
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its interface and basic usage demand some expertise. A similar tool is N2VIS
[20], which additionally makes use of a compact “matrix-like” visualization of
a neuron’s weights, in which each cell of the matrix represents a weight, and
the cell is coloured according to the weight’s magnitude. This is very similar to
visualizing a CNN’s parameters as filters, although the networks and visualiza-
tions in N2VIS do not actually scale to convolutional networks and vision tasks.
Interaction in these and similar research-targeted applications (e.g., [21,22]) typ-
ically centers around designing new networks, and making minute adjustments
to trained networks, to see how these changes affect performance.

Visualizations designed for a tutorial context are different. For example,
Neural Java [3] provides an extensive set of web-based exercises and demos,
allowing students to experiment with and learn about a variety of neural net-
work designs. In one application, the user can make design choices on a network
tasked with solving a toy version of the handwritten digit recognition prob-
lem. Once the network is trained according to the user’s settings, the user can
use a cursor to draw new numbers for the network to classify, and view the
network’s classification output. Despite there being no depiction of the actual
network being trained, this type of application enables students to empirically
determine reasonable answers to a variety of challenging questions, concerning
(for example) convergence, the optimal number of nodes and layers, translation
invariance, and more. These are the types of benefits the current visualization
aims to deliver.

Most interactive visualizations only depict fully-connected networks, and
furthermore only visualize networks that are too small to be effective at com-
puter vision problems. A recent exception to this is ConvNetJS [23], which is a
JavaScript library for training neural networks. The website for the project fea-
tures a set of visualizations, which have interactive examples of neural networks.
As in Neural Java, one example features a neural network solving a handwritten
digit recognition task, although in this case using a standard dataset (MNIST
[12]). The visualization shows the network’s layer-by-layer activation patterns in
response to example inputs, which gives the user an in-depth look at how the
network arrives at its final classification. A weakness of the visualization is that
the activation patterns are not organized in a way that shows the architecture
of the network (e.g., in a node-link diagram); instead these are simply shown in
order, from the zeroth layer to the final layer. Also, unlike the example in Neural
Java, this visualization does not allow users to interactively create new inputs
for the network to classify. Nonetheless, ConvNetJS sets a high benchmark for
scale and practical realism, which the current visualization aims to match.

3 Technical Approach

This section describes the technical approach to creating the visualization framed
in the previous section. The discussion begins with an analysis of the activities
that users of the visualization are expected to be interested in, then proceeds to
describe the major visual elements employed to meet the requirements of those
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tasks. The section concludes with a discussion of the various interactive elements
implemented.

3.1 Task Analysis

The visualization should meet the following goals, which summarize the unique
properties of convolutional networks in computer vision, and reflect lessons
learned from prior work. First, the visualization should handle networks large
enough to solve practical vision tasks, such as handwritten digit recognition. Sec-
ond, the visualization should depict the entire network architecture with a node-
link diagram. Third, the visualization should allow users to easily experiment
with the input-output process of the network, allowing them to judge the net-
work’s robustness to translational variance, rotational variance, and ambiguous
input. Fourth, the visualization should allow users to view details on individual
nodes, such as the activation level, the calculation being performed, the learned
parameters (i.e., the node’s weights), and the numerical inputs and outputs.

3.2 Visual Elements

This section describes the major visual elements of the visualization, emphasizing
their justification through the points established in the task analysis, as well as
through theoretical principles of visualization. Screenshots are shown in Fig. 4.

Node-link Diagram: The only issue with a straightforward implementation of
a node-link diagram is that large networks yield a dense mass of edges between
layers. This was addressed by only showing edges for one node at a time, and only
on request. This strategy is uniquely possible in domains with simple network
architectures: unlike networks describing natural phenomena (e.g., [15,24]), the
edges of CNNs can be implied by their regular pattern. This strategy achieves a
compromise between the block diagram’s simplicity, and the node-link diagram’s
potential for detail.

Camera: Users can zoom in and out by scrolling, and translate the network by
dragging the right mouse button. While exploring the visualization through these
controls, the users can focus their attention on particular layers or features, gain
familiarity with the architecture of the network, and also build an appreciation
for the network’s scale.

Node Activations and Edge Strengths: Displaying the activation levels
of individual nodes, as well as the strength of edges between nodes, is crucial
for creating an informative visualization of a neural network’s behavior. At the
zeroth layer of the network, the individual nodes correspond to pixels in the input
image, so the activation level of each node simply corresponds to the brightness
of the respective pixel. At every other layer of the network, the activation level
corresponds to how closely the output from the layer below matches with the
node’s learned “ideal input”. The image of the ideal input is represented in the
strengths of the node’s edges. In this visualization, edge strengths and activation
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Fig. 4. Screenshots from the visualization. From left to right, the images show: edges
revealed by hovering on a fully-connected node, edges revealed by hovering on a con-
volutional node, details revealed by clicking on a fully-connected node, details revealed
by clicking on a convolutional node, and finally the top layer activations of a network
given ambiguous input. This figure is best viewed in a zoomable PDF.

levels were encoded in a (shared) colormap, which mapped low and high values
to different ends of a palette. The colormap is a variation on the rainbow palette,
making use of a wide range of hues and saturations to ensure that the colors
“pop out” from the background; it also uses a linear value curve, to effectively
differentiate low and high levels of activation or edge strength. The colormap is
consistent with colour-encoding theory, which encourages a mapping across value
for ordered elements [25], and discourages the use of a full rainbow pallette [26].

Background: Preliminary user testing revealed that if the background has a
solid color, and that color is drawn from the same palette as the activation
patterns, then many of the nodes will inevitably blend in with the background.
If the background has a color that none of the nodes have, the color schemes
may clash, and attention will be drawn away from the nodes and toward the
background. The solution was to give the background a large blurred ellipse,
which faded in brightness toward the edges, creating the illusion of a soft light
emanating from (or being projected into) the center of the visualization. Since
the ellipse has a smooth color gradient, the solid-colored nodes cannot blend into
it. The solution thus makes it unnecessary to alter the color palette, and also
adds an aesthetically pleasing soft lighting effect.

Drawing Pad: The drawing pad is positioned at the top-left corner of the visu-
alization, and includes three buttons just below it: a pen, an eraser, and a “clear”
button. The eraser encourages the user to make small adjustments to their input.
One of the greatest learning experiences to be derived from interacting with the
network is in seeing how the network responds to slight changes in input. If the
user gradually morphs a “1” into a “2”, the network will respond in its top layer
by gradually losing confidence (i.e., activation strength) in the “1” node and
gaining confidence in the “2” node. It is worth noting that the drawing pad has
more pixels than the actual input layer of the network. The drawn input is thus
downsampled before it is used by the network. An alternative strategy (pur-
sued in Neural Java [3]) is to give the drawing pad “large pixels”. However, the
high-resolution strategy is more in line with a current issue of neural networks
in computer vision: high-resolution input is available, but a high-resolution net-
work would be computationally intractable. Showing this downsampling stage
in the visualization presents another learning opportunity for the user.
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Node Information on Focus: Two major focus-plus-context tools were imple-
mented in the visualization. First, by hovering on a node, the user is able to see
all of the edges leading toward that node. Second, by clicking on a node, the
user can access detailed information about that node, including node’s position
and role in the network, the numerical input and output of the node, as well
as the calculation being performed. For convolutional nodes, since each node’s
action can be interpreted as applying a filter to a small location in the image,
clicking such a node reveals the corresponding image and filter, in addition to
the numerical data.

4 Implementation Details

To support the visualization, two networks were trained on an augmented version
of the MNIST dataset [12] to classify 28×28 pixel images of handwritten digits.
The dataset was augmented with translated, rotated, and skewed versions of
the original training data, to improve the network’s robustness to these types of
variations.

First, a convolutional network was trained, with 1024 nodes on the bottom
layer (corresponding to pixels), 6 5× 5 (stride 1) convolutional filters in the first
hidden layer, followed by 16 5 × 5 (stride 1) convolutional filters in the second
hidden layer, then three fully-connected layers, with 120 nodes in the first, 100
nodes in the second, and 10 nodes in the third (corresponding to the 10 digits).
The convolutional layers are each followed by downsampling layer that does 2×2
max pooling (with stride 2). This network achieved a 99 % classification accuracy
on the same dataset, which is consistent with the related work [12].

Second, a fully-connected network was trained, with 784 nodes on the bottom
layer (corresponding to pixels), 300 nodes in the first hidden layer, 100 nodes in
the second hidden layer, and 10 nodes in the output layer (corresponding to the
10 digits). In earlier work, this network architecture was shown to be capable
of achieving approximately 97 % classification accuracy on the MNIST test set
[12]. The newly trained network achieved approximately 96 % classification accu-
racy on the same dataset, but showed slightly better invariance to translation,
rotation, and skewing, as expected.

This visualization was implemented as a WebGL application, written in
JavaScript. As a WebGL application, the visualization is compatible with any
device that has an HTML5-ready browser and a GPU. This includes mobile
devices like the iPad 2 and higher, iPhone 4 and higher, and more. The drawing
pad works especially well with touch-screen devices, since the user can draw with
his or her finger, rather than with a mouse. The open source libraries jquery,
three.js, and math.js were instrumental in achieving the final result. MATLAB
was used to train the neural network, and also to export parameter matrices,
colormaps, and 3D network layouts for JavaScript.
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5 Empirical Evaluation

A thorough evaluation of the visualization’s efficacy as an educational tool would
ideally involve a two-arm randomized controlled trial, with machine learning stu-
dents as participants. Future work may develop an evaluation along these lines.
The present evaluation explores instead an important factor of usability known
as responsiveness. This factor represents the ability of the system to provide
quick and meaningful interaction, and it is tested by measuring the system’s
response time to user inputs [27]. Studies on human perception have identified
three approximate limits for a computer application’s response time [28,29]: 0.1
seconds is the limit for providing an impression of continuous feedback (e.g., the
manipulation of objects in the interface should meet this criteria); 1.0 seconds is
the limit for providing an impression of an immediate response (e.g., a command
given to the application should be carried out within this limit); 10 seconds is
the limit for keeping the user engaged (e.g., a delay exceeding this limit may
cause the user to switch away from the task).

The current visualization has two main types of interaction: manipulation of
the camera, which is carried out on the GPU, and drawing pad interaction which
is carried out on the CPU. On a PC with a mid-range graphics card (ATI Radeon
HD 4850), the visualization runs at a consistent 60 frames per second while the
camera is being manipulated, which is well within the 0.1-second criterion. With
a modern processor (Intel Core i7-4770), drawing pad interaction is processed at
an average of 36 milliseconds, which is again within the “continuous feedback”
0.1-second criterion. On mobile devices with GPUs (such as the iPad 2), the
frame rate of the visualization stays at 60, while the drawing pad interaction
slows to approximately 250ms, which places the interaction in the “immediate
response” limit. These results suggest that the application is responsive enough
to support engaging user interaction on a variety of devices.

In preliminary user testing, observing usage of the drawing pad led to some
changes in its functionality: in an early iteration of the visualization, the drawing
pad had a “Go” button, which caused the drawing to be input into the bottom
layer of the network. This two-stage process allowed the user to prepare a detailed
drawing before seeing the network’s interpretation of it. However, users did not
immediately know what to do with the button, and were confused as to why
the network did not respond automatically once a number was drawn. Based on
these observations, the button was removed, and the drawing pad was configured
to send its data through the network after every stroke.

6 Conclusion

This paper presented a new interactive visualization of convolutional neural net-
works. Users can interact with the visualization by drawing new digits for the
network to classify. The visualization shows the nodes of the network arranged in
a node-link diagram, which is novel for visualizations of convolutional networks.
Given an input image, the visualization shows the activation level of every node
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in the network, by setting the brightness and color of each node according to
the magnitude of the activation. A variety of details-on-demand techniques were
employed to incorporate additional information into the visualization, including
node labels, weight images, edges, and a summary of the mathematics being
computed at every node. The visualization also enables responsive experimenta-
tion with the network’s input-output process, allowing users to learn about the
network’s strengths and weaknesses through interaction. Whereas prior visual-
izations have only depicted fully-connected, non-interactive, or toy-sized neural
networks, the current work demonstrates that practical vision-trained convo-
lutional nets can be effectively depicted in an interactive node-link diagram.
The visualization, and its source code, are available at http://scs.ryerson.ca/
∼aharley/vis/.
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